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Alzheimer’s disease (AD) is a severe public health issue in the world. Mag-
netic Resonance Imaging (MRI) offers a way to study brain differences between
AD patients and healthy individuals through feature extraction and compari-
son. However, in most previous works, the extracted features were not aimed
to be causal, hindering biological understanding and interpretation. In order to
extract causal features, we propose using instrumental variable (IV) regression
with genetic variants as IVs. Specifically, we propose Deep Feature Extraction via
Instrumental Variable Regression (DeepFEIVR), which uses a nonlinear neural
network to extract causal features from three-dimensional neuroimages to pre-
dict an outcome (eg, AD status in our application) while maintaining a linear
relationship between the extracted features and IVs. DeepFEIVR not only can
handle high dimensional individual-level data for model building, but also is
applicable to GWAS summary data to test associations of the extracted features
with the outcome in subsequent analysis. In addition, we propose an exten-
sion of DeepFEIVR, called DeepFEIVR-CA, for covariate adjustment (CA). We
apply DeepFEIVR and DeepFEIVR-CA to the Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI) individual-level data as training data for model building,
then apply to the UK Biobank neuroimaging and the International Genomics
of Alzheimer’s Project (IGAP) AD GWAS summary data, showcasing how the
extracted causal features are related to AD and various brain endophenotypes.
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1 INTRODUCTION

Alzheimer’s disease (AD) leads to memory loss, cognitive dementia and behavioral changes, which caused over 121 thou-
sand deaths in 2019.1,2 In 2022, it is estimated that there are 6.5 million AD patients among the American elderly aging 65
or above and this number is predicted to be 13.8 million by 2060.1 Due to the prevalence and impact of AD, an increas-
ing number of researchers work on AD data collection and analysis. The Alzheimer’s Disease Neuroimaging Initiative
(ADNI)3 dataset is one of the most comprehensive and widely used datasets for AD. Structural magnetic resonance imag-
ing (MRI) scans are the major part of this dataset, which are three-dimensional images showing brain structures and
region conditions. In addition to MRI scans, the ADNI dataset also contains genome-wide Single-Nucleotide Polymor-
phisms (SNPs) for each individual, which are genetic variants nowadays commonly used in genome-wide association
studies (GWAS).

Under the reasonable assumption that the pathway of AD is from genetics (and environmental factors) to brain atro-
phy, then to AD, it has been advocated to use neuroimaging features as endophenotypes to gain statistical power because
of their closer proxy to causal genetic factors in the AD pathway, motivating the development of the field of neuroimaging
genetics. In addition to boosting power, the use of endophenotypes may provide important clues about causal pathways
to the disease. A recent GWAS demonstrated the effectiveness of this strategy: some risk genes such as FRMD6, were first
identified to be associated with some neuroimaging intermediate phenotypes, for example, hippocampal atrophy,4 then
were later validated to be associated with AD.5,6 More generally, there may be other regions of interest (ROIs) or even
other imaging features as more effective endophenotypes waiting to be discovered.

Existing neuroimaging GWAS are almost all based on manually extracted or predefined imaging features as endophe-
notypes, for example, based on some ROIs from a brain atlas.7–11 However, due to limited knowledge, there is still debate
on how to define ROIs or even brain atlases; furthermore, these ROIs may or may not be most relevant for the given
GWAS trait, that is, AD here.12 As a motivating question, there are 66 existing atlases for the whole brain structural MRI
data:12 which one to use? It would be of high interest to develop and apply data-driven methods for novel feature extrac-
tion, especially given the recent success of deep learning in image analysis. Due to high dimensionality of MRI scans,
feature extraction is both necessary and challenging. A tensor regression method and a scalable algorithm are proposed
to reduce dimension from high dimensional predictors.13 Tensor Partition Regression Models (TPRM) are designed to
combine extracted features from partitioned tensors.14 In recent years, deep learning techniques have been utilized in
feature extraction. A convolutional auto-encoder network is proposed to reduce dimension from MRI scans.15,16 A recent
study proposes to extract features by training 3D convolutional neural networks in an AD classification task, reporting
an AUC score of 0.75 on test data.17 They also perform GWAS scans to identify genetic variants associated with extracted
features. However, due to the existence of hidden confounders that affect both brain images and the AD status (or other
outcomes), the above methods are not designed for and cannot be interpreted as causal feature extraction, which may
hinder biological understanding of AD mechanisms.

Instrumental variable (IV) regression is a popular tool to learn causal relationships between some exposures and an
outcome while being robust to hidden confounding. In the ADNI dataset, the exposures are MRI scans or their extracted
features, the outcome is the AD status, and the SNPs can be treated as IVs. Two-stage least squares (2SLS) is the most
widely used method in IV regression.18 2SLS estimates the exposures using IVs in the first stage, and uses the estimated
exposures to predict the outcome in the second stage. Linear regression models are fitted in both stages. When genetic
variants/SNPs are used as IVs, some special cases of IV regression (notably with independent SNPs) are often known
as Mendelian randomisation (MR) that have recently been applied to neuroimaging data.19,20 One of the most popu-
lar MR is inverse-variance weighted Mendelian randomisation (IVW-MR),21 designed for one exposure and combining
results from each SNP by inverse-variance weighting. Multi-variable Mendelian randomisation (MVMR) is an extension
to multiple exposures.22 To lift the restriction of the linearity assumption, nonparametric models like kernel methods and
basis functions are used in IV regression.23,24 A nonparametric method is proposed to detect nonlinear causal effects of
a scalar/univariate exposure on the outcome based on GWAS summary data in transcriptome-wide association studies
(TWAS).25 Compared to classical nonparametric models, neural networks are an alternative choice for flexible modeling
of nonlinear relationships. DeLIVR keeps a linear regression model in the first stage but fits a neural network in the second
stage.26 DFIV27 and DeepIV28 apply neural networks in both stages to learn nonlinear causal relationships. DeepGMM29

is based on the generalized method of moments (GMM) using nonlinear functions of exposures and IVs.
Although the existing IV regression methods can extract causal features, they are not ideal in some applications as

for the ADNI dataset. First, for methods fitting a linear model in the first stage like 2SLS and DeLIVR, modeling a 3D
image by a linear function is not effective in general. Besides, we use MRI scans in the ADNI-1 dataset which is a part
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of the ADNI dataset and contains MRI scans of 817 individuals and even fewer if the genetic data are combined. Thus,
we want to use all samples in the ADNI-1 dataset for training and validation and use AD GWAS summary statistics for
hypothesis testing. AD GWAS summary statistics are based on (marginal) linear models between AD and SNPs. In general,
nonlinear regression models that do not guarantee a linearity between IVs and the outcome cannot be applied to GWAS
summary data. There are some similarities between our models/assumptions and those in a previous study,25 however,
a key difference is that we apply CNNs to 3-dimensional images as a high-dimensional exposure while they deal with a
scalar (ie, gene expression) exposure.

In order to apply IV regression to high dimensional exposures and use GWAS summary statistics in testing at the same
time, we propose a novel method called Deep Feature Extraction via Instrumental Variable Regression (DeepFEIVR). For
features extracted by a convolutional neural network from high dimensional exposures, DeepFEIVR projects them onto
the space of IVs and uses these projected features to predict the outcome, thus ensuring both the relevance/predictivity
and causal interpretation of the extracted features for the outcome. In Section 2, we first introduce 2SLS, then discuss
the details of our proposed method DeepFEIVR and its extension for covariate adjustment, DeepFEIVR-CA. Section 3
shows some simulation results of DeepFEIVR. In Section 4, we extract some causal features from MRI scans in the ADNI
dataset by DeepFEIVR and test for possible associations between the extracted features and AD using a large-scale AD
GWAS summary dataset, followed by a comparison with the results of DeepFEIVR-CA. Then we explore the relationships
between the extracted features and brain regions/endophenotypes before ending with a short discussion.

2 METHODS

2.1 Notation

Assume that Z ∈ Rp, X ∈ Rk, and Y ∈ R represent IVs, exposures and the outcome respectively. X and Y are affected
by a hidden (combined) confounder U. In the IV regression setting, we consider a training set tr = {Ztr,Xtr,Ytr} with
size n and a validation setval = {Zval,Xval,Yval} with size m. In hypothesis testing, we first consider an individual-level
test set in

te = {Zte,Yte} with size n′. Based on this individual-level test set, we can create a set of summary statistics


s
te = {(�̂� j,̂Var(�̂� j)) ∶ j = 1, … , p}. 𝛾j is the effect size of the jth element of Z on Y , which can be estimated by a linear

model regressing Yte on the jth column of Zte. The summary statistics also include ̂Var(�̂� j) for the jth IV, which is the
squared standard error of 𝛾j. Under some weak assumptions, the summary statistics can be used in hypothesis testing in
place of the individual-level test set.

2.2 An existing method: 2SLS

We start with introducing 2SLS. The causal model structure of 2SLS is

stage 1 ∶ X = B⊺Z + U1 + Δ1,

stage 2 ∶ Y = 𝛽

⊺X + U2 + Δ2,

where U1 ∈ Rk and U2 ∈ R are correlated confounders, Δ1 ∈ Rk and Δ2 ∈ R are two error terms with zero means and
constant variances, and Z is independent of (U1,Δ1). For notational convenience, we leave out the intercepts in this paper
and assume Z, X , Y are already centered at sample mean 0. B ∈ Rp×k and 𝛽 ∈ Rk are the parameters to be estimated.
It is assumed that there exist confounders affecting both X and Y , so U1 and U2 are correlated while Δ1 and Δ2 are
independent. In order to eliminate the impact from confounders, Z (IVs) should satisfy the following three assumptions:
(1) the distribution of the exposure X given IVs Z is not constant in Z; (2) Z is independent of the outcome Y conditional
on X , U2 and Δ2; (3) Z and (U2,Δ2) are independent. In the first stage of 2SLS, we estimate the mean of X by a linear
model regressing X on Z. In the second stage, we estimate Y by a linear model regressing Y on ̂X , where ̂X is the estimated
mean of X obtained from the first stage. In hypothesis testing, the null hypothesis is 𝛽j = 0 for some or all of j = 1, 2, … , k,
where 𝛽j is a component of 𝛽 = (𝛽1, 𝛽2, … , 𝛽k). Since Y and Z are assumed to follow a linear relationship in 2SLS, we
can use summary statistics in hypothesis testing. However, 2SLS is not effective in modeling high dimensional exposures
by using a linear model in the first stage, so in the next part, we consider a deep learning based instrumental variable
regression method.
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(A) (B)

F I G U R E 1 Causal model comparison between 2SLS and DeepFEIVR.

2.3 New method: Deep feature extraction via instrumental variable regression

2.3.1 Causal model structure

The causal model structure of Deep Feature Extraction via Instrumental Variable Regression (DeepFEIVR) involves two
stages

stage 1 ∶ f (X) = B⊺Z + U1 + Δ1,

stage 2 ∶ Y = 𝛽

⊺f (X) + U2 + Δ2, (1)

where f is a nonlinear multivariate function extracting q features from X . B ∈ Rp×q, 𝛽 ∈ Rq, and f are estimated in the first
and second stages. We assume q < p. U1 ∈ Rq and U2 ∈ R are correlated. Δ1 ∈ Rq and Δ2 ∈ R are defined as before in
2SLS:Δ1 andΔ2 are independent and they both have zero means and constant variances. Z and (U1,Δ1) are independent.
For simple notation Z and Y are assumed to be centered at mean 0. In DeepFEIVR, three IV assumptions are revised by
replacing the exposure X with the features f (X): (1) the conditional distribution of the features f (X) given Z is not constant
in Z; (2) Z is independent of Y conditioning on f (X), U2 andΔ2; (3) Z and (U2,Δ2) are independent. The first assumption
says that Z is relevant to f (X), and the second assumption can be directly satisfied if Z, X and Y follow the causal model
structure (1). Taking expectation of Y conditional on X gives E(Y |X) = 𝛽

⊺f (X) + E (U2 + Δ2|X)where E (U2 + Δ2|X) ≠ 0.
Neglecting this nonzero term can lead to incorrect inference. Thus, IVs are used for correct inference about 𝛽.

In the first stage, E(f (X)|Z) = B⊺Z, so we can project f (X) onto the space of Z and estimate E(f (X)|Z) by ̂B⊺Z. Then
in the second stage, E(Y |Z) = E (𝛽⊺f (X)|Z) = 𝛽

⊺E(f (X)|Z) and we can estimate the conditional expectation of Y given Z
by replacing E(f (X)|Z)with ̂B⊺Z. With B and 𝛽 being estimated, E(Y |Z) is estimated by ̂

𝛽

⊺
̂B⊺Z, which is a linear transfor-

mation of Z. Thus, summary statistics can be used in subsequent hypothesis testing in DeepFEIVR as to be discussed in
Section 2.3.3.

2SLS can be regarded as a special case of DeepFEIVR by replacing f (X) with X in causal model (1). We compare the
causal models of 2SLS and DeepFEIVR in Figure 1.

2.3.2 Estimation

In order to capture the nonlinearity of f , we use f
𝜃
∈  = {f

𝜃
∶ 𝜃 ∈ Θ} to model f , where  is a class of neural networks

with a specified architecture, and estimate 𝛽 and 𝜃 in batches in a stochastic gradient descent (SGD)-type algorithm. With
a batch set {Zb,Xb,Yb} of size nb, we update the estimates of 𝛽 and 𝜃 by

min
𝜃,𝛽

1
nb

||Yb − Zb ̂B
b
𝜃
𝛽||22 + Ω(𝜃, 𝛽), (2)
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where ̂Bb
𝜃
=
(
Z⊺bZb + 𝜆nbI

)−1Z⊺bf
𝜃
(Xb) is a closed-form solution to the minimization problem in the first stage:

min
B

1
nb

||f
𝜃
(Xb) − ZbB||22 + 𝜆||B||22.

This is a ridge regression model with a ridge penalty parameter 𝜆 while the minimization problem (2) is for the second
stage. Ω(𝜃, 𝛽) is an elastic net regularization term for 𝜃 and 𝛽.

2.3.3 Hypothesis testing

After training the model, we obtain the estimated 𝜃 and then the estimated weight matrix ̂B
̂
𝜃

=
(
Z⊺trZtr + 𝜆nI

)−1Z⊺trf
̂
𝜃

(Xtr).
Note that, this estimate is based on the entire training set. For a global testing of whether there is any association between
the features and the outcome, we test

H0 ∶ 𝛽1 = 𝛽2 = · · · = 𝛽q = 0 versus H1 ∶ there exists j such that 𝛽j ≠ 0.

For an individual test on the jth feature, we test

H0 ∶ 𝛽j = 0 versus H1 ∶ 𝛽j ≠ 0.

Next, we show how to perform hypothesis testing based on ̂B
̂
𝜃

with an individual-level test dataset in
te and a set of

summary statisticss
te.

Given an individual-level test setin
te = {Zte,Yte}, it is straightforward to perform a global Wald test on the association

between Yte and Zte ̂B ̂
𝜃

, and individual Wald tests on that between Yte and each column of Zte ̂B ̂
𝜃

, to detect (putative) causal
relationships between the features and the outcome. When the size of the individual-level test set is not large enough,
Wald tests can be inaccurate.

In case that large individual-level data are not available, we can consider using GWAS summary statistics calculated
based on some large but unavailable individual-level dataset. Assume that a set of summary statisticss

te = {�̂� j,̂Var(�̂� j)}
p
j=1

with the sample size n′ is available. As in previous studies,31 we can estimate the coefficient vector 𝛽S and its covariance
matrix using the following formulas

̂
𝛽S =

(
̂B⊺
̂
𝜃

Z⊺Z ̂B
̂
𝜃

)−1
̂B⊺
̂
𝜃

Z⊺Y , (3)

̂Var( ̂𝛽S) =
1

n′ − q

(

Y ⊺Y − ̂
𝛽

⊺
S ̂B

⊺
̂
𝜃

Z⊺Y
)(

̂B⊺
̂
𝜃

Z⊺Z ̂B
̂
𝜃

)−1
. (4)

We can estimate Z⊺Z by n′

nR
Z⊺RZR where ZR ∈ RnR×p is a matrix of Z in a reference panel. This reference dataset can be the

ADNI dataset or a separate independent individual-level genotype dataset. Note that Z⊺Y ∈ Rp and denote the jth element
of Z⊺Y as {Z⊺Y}j. Its estimate ̂{Z⊺Y}j can be taken as ̂{Z⊺Z}jj�̂� j, where ̂{Z⊺Z}jj is the jth diagonal element of the estimated
{Z⊺Z}. The median of the set

{

(n′ − 1)̂{Z⊺Z}jj ∗̂Var(�̂� j) + �̂� j ̂{Z⊺Y}j, j = 1, 2, … , p
}

can be used to estimate {Y ⊺Y}. Based

on ̂
𝛽S and ̂Var( ̂𝛽S), a Wald test is used to test q features globally. For j = 1, 2, … , q, based on ̂

𝛽S,j and ̂Var( ̂𝛽S)jj, one can
test whether the jth extracted feature is associated with Y . Although the above formulas for ̂

𝛽S and ̂Var( ̂𝛽S) are derived
for a quantitative Y , as discussed in previous studies,31 we can still use these formulas for a binary Y when using GWAS
summary data.

The extracted causal features are not unique. For any invertible matrix M ∈ Rq×q, we can rewrite the two-stage models
as: M−1f (X) = M−1B⊺Z +M−1U1 +M−1Δ1 and Y = 𝛽

⊺MM−1f (X) + U2 + Δ2. Thus, M−1f (X) equivalently represents the
causal features with the corresponding association parameter 𝛽

⊺M. However, this does not affect testing whether the
extracted features are associated with the outcome because 𝛽 = 0 is equivalent to M⊺

𝛽 = 0.

2.4 New method: DeepFEIVR-CA

We extend the proposed method by covariate adjustment (CA) when some covariates are present in the training and
validation sets. We consider the following causal model
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stage 1 ∶ f (X) = B⊺Z + A⊺W + U1 + Δ1,

stage 2 ∶ Y = 𝛽

⊺f (X) + 𝛾

⊺W + U2 + Δ2, (5)

where W ∈ Rw are covariates, A ∈ Rw×q and 𝛾 ∈ Rw are the unknown parameters for covariates. We assume (Z,W) are
independent of (U1,Δ1) and three IV assumptions become: (1) the conditional distribution of f (X) given Z and W is not
constant in Z and W ; (2) Z is independent of Y conditional on f (X), W , U2 and Δ2; (3) (Z,W) and (U2,Δ2) are indepen-
dent. In the first stage, we have E(f (X)|Z,W) = B⊺Z + A⊺W , and in the second stage, E(Y |Z,W) = 𝛽

⊺E(f (X)|Z,W) + 𝛾

⊺W .
Based on (5), we propose DeepFEIVR-CA for covariate adjustment. For parameter estimation in DeepFEIVR-CA, we
modify (2) as

min
𝜃,𝛽,𝛾

1
nb

||Yb − (Zb,Wb) ̂B
b
𝜃
𝛽 −Wb𝛾||

2
2 + Ω(𝜃, 𝛽), (6)

where Wb is the matrix for covariates in a batch set and ̂Bb
𝜃
= ((Zb,Wb)⊺(Zb,Wb) + 𝜆nbI)−1(Zb,Wb)⊺f𝜃(Xb). Then ̂B

̂
𝜃

is
estimated as ((Ztr,Wtr)⊺(Ztr,Wtr) + 𝜆nI)−1(Ztr,Wtr)⊺f𝜃(Xtr).

With individual-level test data, hypothesis testing is straightforward. However, GWAS summary data usually do not
offer any information about covariates; assuming that Z and W are nearly uncorrelated, we can conduct hypothesis testing
as in DeepFEIVR without covariates.

2.5 CNN model architecture

In DeepFEIVR as applied to the simulated data and the ADNI data, f is a nonlinear function estimated by a CNN. For real
data, the input of this CNN is 3D MRI images with 3 channels for white matter, gray matter and cerebrospinal fluid (WM,
GM, CSF) respectively, and the extracted features are the output of this CNN model. The architectures of DeepFEIVR
and the direct CNN applied in simulations and real data (ADNI) are shown in Figures 2 and 3. More details and model
architecture of DeepFEIVR-CA are provided in the Appendix.

F I G U R E 2 The model architecture of DeepFEIVR applied to the simulation dataset. Z are IVs and X are simulated images.
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(A)

(B)

F I G U R E 3 The model architecture of DeepFEIVR used in the ADNI dataset. Left: the model architecture f
𝜃
. Top-Right: the direct CNN

model in which a linear regression model follows f
𝜃
. Bottom-Right: DeepFEIVR in which the extracted features by f

𝜃
are projected onto the

column space of the IVs and then a linear regression model is applied. Z and X are the IVs and input image respectively.

For a neural network trained on images, gradCAM31 is a technique to detect important regions of images from the net-
work perspective. In a CNN neural network including a Global Averaging Pooling (GAP) layer, suppose {Zwhd ∈ Rp1

,w =
1, 2, … ,nw, h = 1, 2, … ,nh, d = 1, 2, … ,nd} are outputs of any layer before the GAP layer. Then the activation of voxel
(w, h, d) for the jth feature is calculated by |Aj

whd| with Aj
whd = Z⊺whd

(
1

nwnhnd

∑
whd

𝜕Fj

𝜕Zwhd

)

, where Fj is the jth extracted fea-

ture. The original version of gradCAM is designed for a classification problem and uses ReLU(Aj
whd) as the activation

function. Since the extracted features are not binary here, we use the absolute function instead.

3 SIMULATIONS

In this part, simulations are conducted to assess the performance of DeepFEIVR. In each replicate of simulation, we first
simulate Z ∈ R50, partitioned into 10 groups with 5 IVs in each group. Each group of IVs is generated from a multivariate
normal distribution with correlation 0.1 between different IVs. The IVs between different groups are independent. U and
𝜖2 are generated from N(0, 1) independently, while 𝜖11 and 𝜖12 are generated from N(0, 0.25) independently. Then X , f and
Y are generated by

f ∶=

(
f1

f2

)

= B⊺Z +

(
U
U

)

+

(
𝜖11

𝜖12

)

,

X = Image(f1, f2) + N,

Y = 𝛽

⊺f + U + 𝜖2,

where each element in B ∈ R50×2 is generated by a standard normal distribution independently, and 𝛽 = d ∗ (−0.1, 0.2)⊺
with d ∈ {0.00, 0.02, 0.03, 0.05}. X ∈ R20×20 is an image generated from f by presenting two squares in the left and right
parts with values

√
|f1| and

√
|f2| respectively; the signs of f1 and f2 determine that the squares appear in the top or bottom

parts of the image. If f1 is positive, the square for f1 appears in the left-top part of the image; otherwise, the square appears
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3672 YAO et al.

F I G U R E 4 An image example (gray scale) with f1 = −1 and f2 = 4. The square for f1 (with size 6 × 6) is positioned at the left-bottom of
the image as f1 is negative while the square for f2 (with size 4 × 4) is at the right-top part as f2 is positive.

in the left-bottom part. The square for f2 is similarly determined (in the right part of the image). The sizes of two squares
are independently sampled from {4 × 4, 6 × 6, 8 × 8}. N is a 20 × 20 matrix, each element of which follows N(0, 0.01)
independently. See Figure 4 for an example. Based on how X is generated, in return f can be viewed as a function of X .

We repeat each simulation setup for 100 times, and in each replicate we apply DeepFEIVR using individual–level data
or summary statistics, 2SLS using individual–level data or summary statistics and a direct CNN. In the direct CNN, we
use the output of the second last layer in a CNN as the extracted features and use them to perform hypothesis testing. In
2SLS, we regress vec(X) (ie, the vector of all elements of X) on Z in the first stage and conduct hypothesis testing of Y on
̂B⊺vec(X)Z (as the estimate mean of vec(X)). In the second stage, due to high dimension of vec(X), the degrees freedom of
the Wald test is estimated by the effective rank of ̂B⊺Vec(X)Z. For DeepFEIVR, we do not assume that we know the number
of the true features (ie, 2 in the simulated data). So in the standard setting, we choose 4 as the (estimated) number of
extracted features (q) and use the batch size 32. In each replicate, training data size is 800, validation data size is 200, test
data size is 4000 (the same data set used for hypothesis testing with individual-level data or summary statistics) and the
size for reference panel is 20000.

We show the results of the sample proportions of the p-values smaller than 0.05 from 100 replicates for DeepFEIVR,
the direct CNN and 2SLS in Table 1. In addition to the standard setting, we also consider the situations of silencing a
feature in simulations (with 𝛽 = d ∗ (0.0, 0.2)⊺), using weak IVs (with the elements in the first 25 rows of B generated
from N(0, 0.01) independently), using the estimated number of features as q = 2 (same as in the simulated data), using a
smaller batch size of 16, or using a doubled training sample size of 1600.

As shown in Table 1, for DeepFEIVR, the estimated Type I error rates (d = 0.0) are close to 0.05, while the esti-
mated power (d > 0) grows with increasing d. The results based on the summary statistics are close to those on the
individual-level data, confirming that it is good to use summary statistics for hypothesis testing in DeepFEIVR. In con-
trast, the direct CNN fails to extract causal features, which is expected as it does not use IVs to distinguish true causal
features from hidden confounding effects. Furthermore, DeepFEIVR outperforms 2SLS regardless of 𝛽 = d ∗ (−0.1, 0.2)⊺
or 𝛽 = d ∗ (0.0, 0.2)⊺, or of the presence of weak IVs. For DeepFEIVR, using a smaller batch size or using a different
number of features does not make much difference, and its power grows slightly with the larger training sample size.

4 REAL DATA ANALYSES

4.1 Datasets

4.1.1 ADNI

In the real data analysis, the SNPs, MRI scans and labels of AD status in both the training and validation data as
well as a brain region of interest (ROI) dataset are downloaded from the Alzheimer’s Disease Neuroimaging Initia-
tive (ADNI) (https://adni.loni.usc.edu). In 2003, ADNI, guided by Michael W. Weiner, MD, was started and involved
collaboration from private and public sources. The original label in the ADNI dataset indicates CN (normal control),
MCI (mild cognitive impairment) and AD (Alzheimer’s disease). The principal objective of ADNI was to study the
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YAO et al. 3673

T A B L E 1 Simulation results of DeepFEIVR, the direct CNN and 2SLS in simulations: the empirical type I errors (for d = 0.0) and power
(for d > 0) at the nominal significance level of 0.05 based on 100 independent replicates for each setup.

Test data Methods d = 0.0 d = 0.02 d = 0.03 d = 0.05

Standard Individual DeepFEIVR 0.05 0.11 0.33 0.74

Summary DeepFEIVR 0.05 0.10 0.33 0.74

Individual Direct CNN 0.97 1.00 1.00 1.00

Individual 2SLS 0.08 0.11 0.08 0.28

Summary 2SLS 0.07 0.10 0.06 0.30

𝛽 = d ∗ (0.0, 0.2)⊺ Individual DeepFEIVR 0.04 0.15 0.32 0.65

Summary DeepFEIVR 0.04 0.14 0.33 0.64

Individual 2SLS 0.01 0.08 0.18 0.24

Summary 2SLS 0.02 0.07 0.19 0.24

Weak IVs Individual DeepFEIVR 0.08 0.08 0.13 0.39

Summary DeepFEIVR 0.08 0.07 0.15 0.40

Individual 2SLS 0.09 0.06 0.09 0.15

Summary 2SLS 0.10 0.07 0.09 0.22

q = 2 Individual DeepFEIVR 0.05 0.09 0.27 0.70

Summary DeepFEIVR 0.05 0.09 0.28 0.70

Batch size 16 Individual DeepFEIVR 0.06 0.13 0.30 0.80

Summary DeepFEIVR 0.06 0.12 0.29 0.80

Training size 1600 Individual DeepFEIVR 0.05 0.13 0.38 0.77

Summary DeepFEIVR 0.07 0.12 0.39 0.77

progression of AD by combining MRI scans, genetic data, as well as other neuropsychological test results. Updated infor-
mation can be found at https://www.adni-info.org. In this paper, we combine MCI and CN and set the binary label to
be AD or not AD. 755 individuals in the ADNI dataset have both MRI scans and SNP data available. In the 755 individ-
uals, 175 individuals are labeled as AD. Before applying DeepFEIVR, we reduce the number of IVs (SNPs) to 317 by the
following steps:

1. Remove SNPs that not appeared in the reference panel (UK Biobank individual-level genotypic data) and two summary
statistics sets IGAP and BIG40. The details of these datasets will be introduced later.

2. SNPs with a missing value proportion smaller than 20% are selected for further consideration and for each selected
SNP, we impute NAs with the mode.

3. We fit a linear model regressing the binary label (AD or not AD) on each SNP and remove SNPs with a p-value larger
than a cutoff 0.001.

4. For a pair of highly correlated SNPs with the absolute correlation larger than 0.8, the SNP with a larger p-value is
removed.

After GradWarp correction, B1 nonuniformity correction and N3 bias field correction, ADNI provides 1075
T1-weighted 1.5 T 3D structural MRI scans*. In preprocessing of MRI scans, we first extract brain tissues using Brain
Extraction Tool (BET)32 and then use FMRIB’s (Functional Magnetic Resonance Imaging of the Brain) Automated
Segmentation Tool (FAST)33 to partition brain tissues into three types, white matter (WM), gray matter (GM) and cere-
brospinal fluid (CSF). Both tools are from FSL (FMRIB Software Library). To use a common dimension of the images from
different individuals while preserving much information for learning, we crop all 3D images into the dimension/shape
of (192, 192, 130) and normalize voxel values inside [0, 1]. We treat the three tissue types as 3 channels and use the
CNN architecture in Section 2.5 to extract features from the combined 3D images with 3 channels. Figure 5 shows an
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3674 YAO et al.

F I G U R E 5 An example of the original MRI scan, WM, GM and CSF tissues (from the top row to the bottom) in coronal (left), axial
(middle) and sagittal (right) planes in the ADNI dataset. The repetition time is 2400 ms and echo time is 3.5 ms. The flip angle is 8 degree.

image sample and its 3 tissues from 3 planes. In addition to MRI and genetic data, the ADNI dataset also provides a
Region of Interest (ROI) dataset, which records gray matter volumes of 116 brain regions from gray matter maps of the
ADNI images generated by longitudinal Voxel-Based Morphometry (VBM). The regions are determined using Anatom-
ical Automatic Labelling (AAL).34 We can use this dataset to study how our extracted causal features are related to
brain regions.

In the ADNI data, 3D MRI scans are treated as the high dimensional exposure and a binary label (AD or not) is the
outcome. Directly extracting features by fitting a neural network model on MRI scans to predict AD cannot guarantee that
the extracted features are causal. For example, age can be one of the confounders that change conditions in brain regions
and directly affect the risk of AD at the same time. The changes in brain regions can be highly correlated with AD but we
cannot claim that these changes are all causal contributors. We treat some SNPs as IVs since SNPs are likely to satisfy the
three valid IV assumptions: some SNPs are associated to the brain, may influence the risk of AD only through the brain,
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and are independent of hidden confounders. Finally, some baseline variables, such as age, gender and handedness, can
be used as (observed) covariates/confounders.

4.1.2 IGAP

The limited sample size of the ADNI dataset drives us to find another dataset for association testing. Due to the privacy
issues in genetic datasets, large datasets containing individual-level genetic and AD status information are not easily
accessible. Fortunately, several AD GWAS summary datasets based on large AD GWAS studies are publicly available. The
International Genomics of Alzheimer’s Project (IGAP)35 provides a summary statistics dataset we need for hypothesis
testing. IGAP conducts two stages of AD GWAS studies and they provide summary statistics of two stages separately. We
use the summary statistics from Stage 1 as it involves more individuals and more SNPs. In Stage 1, the summary statistics
are calculated based on 17 008 AD individuals and 37 154 control individuals for over 7 million SNPs. To avoid individual
identification, IGAP only provides the estimated effect sizes of SNPs on AD and their corresponding standard errors.

4.1.3 UK Biobank individual-level genotypic data

UK Biobank individual-level data37 contains genetic and other information on around 490 000 individuals of age 40+
from 2006 to 2010. We can use this dataset as the reference panel for genotypes in hypothesis testing with GWAS summary
data; that is, we use it to obtain a robust estimate of Z⊺Z.

4.1.4 BIG40

The Oxford Brain Imaging GWAS Data (BIG40), as a part of the UK Biobank data, collects the summary statistics of
3935 imaging-derived phenotypes (IDPs) in a GWAS study performed on around 33k individuals, a subset of the UK
Biobank participants. For 3935 IDPs and over 17 million SNPs, the (marginal) effect size of each SNP on each IDP and its
standard error are estimated. The IDPs are numeric measurements derived from multi-modal MRI scans (eg, the volume
of a specific brain region). We will use this set of summary statistics to identify significant IDPs related to the extracted
features by DeepFEIVR.

4.2 Extracted features and their association with AD

In training the direct CNN model and the DeepFEIVR model, the batch size is chosen to be 16 and 672 samples are in
the training set. We use the rest samples as validation samples. In hypothesis testing of DeepFEIVR, we use the IGAP AD
GWAS summary statistics dataset as summary data, and the UK Biobank individual-level genotypic data as the reference
panel. A Wald test is conducted on 20 extracted features. The p-value of this Wald test is 8.321 × 10−11, indicating that the
extracted 20 features together are significantly associated with AD. Next we conduct individual tests on each of the 20
features separately. Negative log10 (p-values) of the 20 individual tests are shown in Figure 6, in which the 4th, 5th, 6th,
11th, 13th, 17th, 19th, and 20th features are significant for AD at a p-value threshold 0.05.

As in previous neuroimaging GWAS studies with ADNI data,7 for DeepFEIVR-CA, we consider the baseline age,
gender and handedness as covariates; each of the covariates is not significantly associated with the IVs as shown in a linear
model regressing each covariate on all IVs. The p-value of the global test for AD association with the extracted features
based on the IGAP AD GWAS summary statistics is 0.039, which is statistically significant but less significant than that
from DeepFEIVR; we will comment more on this result in the Discussion section. To assess how the extracted features by
DeepFEIVR and DeepFEIVR-CA are related, we conduct a canonical correlation analysis on the two sets of the extracted
features. Canonical correlations measure some maximum similarities between two sets of the features through their
linear combinations. The ith canonical correlation is the maximum correlation between a linear combination of causal
features from DeepFEIVR and a linear combination of causal features from DeepFEIVR-CA, both of which are orthogonal
to all linear combinations in previous i − 1 canonical correlations. In Figure 7, we provide a canonical correlation plot
comparing causal features extracted by DeepFEIVR and DeepFEIVR-CA. It is clear that the top few components are highly
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3676 YAO et al.

F I G U R E 6 Negative log10 (p-values) of individual tests on each of the 20 extracted causal features for its association with AD. The
extracted causal features with p-values smaller than 0.05 are labeled with their IDs.

F I G U R E 7 The 20 canonical correlations between DeepFEIVR- and DeepFEIVR-CA-extracted features.

related: for example, the first 5 correlations are all larger than 0.9; but on the other hand, some canonical correlations are
moderate or small. For these reasons, we will skip further discussions on the results of DeepFEIVR-CA.

4.3 Extracted features and their interpretation

4.3.1 Extracted causal features and ROIs

In this part, to facilitate their interpretation, we show how the causal features extracted by DeepFEIVR are related to the
brain regions of interest (ROIs). Here we also compare the noncausal features extracted by the direct CNN model and the
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T A B L E 2 The top 5 most significant ROIs for 3 noncausal (by the direct CNN) or causal PCs (by DeepFEIVR) after PCA.

Direct CNN DeepFEIVR

1st HIPPL HIPPL

2nd HIPPR HESCHLR

3rd HESCHLR HIPPR

4th HESCHLL TEMPMIDL

5th ROLANDOPL TEMPINFL

causal features extracted by DeepFEIVR (see Figure 3 for model differences). In order to compare 20 features together,
we extract some top principal components (PCs) from principal component analysis (PCA) of the causal or noncausal
features. The number of PCs are determined by the explained proportion of the total variance larger than 10% as we expect
each PC to be representative. For PCA models applied to the causal or noncausal features, 3 PCs satisfy this requirement
and their cumulaive explained proportions of the total variance are both larger than 70%. Then for each ROI and each PC,
we fit a simple linear model, regressing each extracted PC on each ROI and the p-value of the slope coefficient indicates
the relatedness between the PC and the ROI. A smaller p-value of the slope coefficient indicates that the extracted PC is
more strongly associated with the ROI. In Table 2, we list 5 most significant ROIs associated with the PCs of the features
extracted from the direct CNN (noncausal) or DeepFEIVR (causal). The p-value of each ROI is determined as the smallest
of its 3 p-values associated with the 3 PCs.

Table 2 lists the top 5 ROIs selected by the two methods: HIPPL (left hippocampus), HIPPR (right hippocampus),
HESCHLR (right Heschl’s gyrus), HESCHLL (left Heschl’s gyrus), ROLANDOPL (left Rolandic operculum), TEMPMIDL
(left middle temporal gyrus) and TEMPINFL (left inferior temporal gyrus). Among the above selected ROIs, the hip-
pocampus has long been known to be related to AD in the literature.37 The left Heschl’s gyrus is shown to be helpful in
distinguishing AD and healthy individuals.38 Expression of 𝛾-aminobutyric acid is affected in the middle temporal gyrus
of AD individuals.39 Patients with AD or MCI show a loss of synapses in the inferior temporal gyrus.40

Although the top ROIs associated with the causal or noncausal features largely overlap, there are some differences
between the three PCs of the causal and noncausal features. Canonical correlations between the two sets of the 3 PCs
from the direct CNN and DeepFEIVR are only 0.57, 0.49, and 0.02, respectively.

In Figure 8, we show the plots of − log10 (p-values) between each of 116 ROIs and each of the 3 causal PCs.
Table 2 only considers the brain regions globally associated with PCs. Next, we investigate the ROIs related to each

individual feature extracted. In Figure 9, we show the p-values for the associations between each of the 116 ROIs and the
4th or the 13th feature; recall that the 4th and 13th feature are both highly associated with AD based on the IGAP AD
GWAS summary statistics. For the 4th feature, the p-values of HIPPL (left hippocampus) and HESCHLR (right Heschl’s
gyrus) are < 0.05, while for the 13th feature, HIPPL, HIPPR (right hippocampus) and HESCHLR all yield a p-value <

1 × 10−6. However, some important features may not be significantly associated with any ROIs by capturing information
beyond the ROIs.

For comparison, we also treat the 166 ROIs as exposures for the outcome AD in multi-variable 2SLS, yielding a p-value
of nearly 0 from the global association test. In uni-variable 2SLS on each ROI and AD, HIPPL, HIPPR and HESCHLR are
the most significant ROIs, which confirms our earlier findings. Nevertheless, the ROIs contain only information about
regional gray matter volumes, but DeepFEIVR can detect other brain features such as multiple ROIs and their interactions
or those related to white matter.

4.3.2 Activation maps of extracted causal features

In this section, we use gradCAM32 to show how significant features extracted by DeepFEIVR relate to the brain regions.
For each significant feature extracted by DeepFEIVR, we can apply gradCAM to this feature and identify the region with
the largest absolute activation, which is supposed to contribute most to this feature. Figure 10 gives an example for the
activation maps for the 13th feature on the outputs of the second convolutional network block. The absolute activation
of each plot is mapped to the range [0, 1]. The active regions appear to be close to the (left and right) hippocampus and
other ROIs highlighted in Section 4.3.1.
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3678 YAO et al.

F I G U R E 8 Negative log10 (p-values) for associations between each of 116 ROIs and each of the 3 PCs of the extracted causal features.

F I G U R E 9 Negative log10 (p-values) of associations testing between each of 116 ROIs and the 4th or the 13th extracted causal features.
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F I G U R E 10 GradCAM activation maps for the 13th causal feature.

T A B L E 3 The top 10 most significant IDPs.

IDP (abbr.) IDP

Vol-P-occ Volume of Pole-occipital (left) by white surface parcellation (Destrieux)

Vol-Somo Volume of S-orbital-med-olfact (left) by white surface parcellation (Destrieux)

Area-lo-DK Area of lateral occipital (left) by white surface parcellation (Desikan-Killiany)

Area-V2 Area of V2 (left) by white surface parcellation (BA_exvivo)

Area-lo-DKT Area of lateral occipital (left) by white surface parcellation (DKT)

Area-P-occ Area of Pole-occipital (left) by white surface parcellation (Destrieux)

Area-Soml Area of S-oc-middle+Lunatus (left) by white surface parcellation (Destrieux)

MD-r-ic Mean diffusivity in retrolenticular part of internal capsule (right) on fractional anisotropy (FA) skeleton

ML1-sup-fo Mean L1 in superior fronto-occipital fasciculus (left) on FA skeleton

ML3-r-ic Mean L3 in retrolenticular part of internal capsule (right) on FA skeleton

4.3.3 Extracted causal features and IDPs

IDPs are some numerical features generated from various types of MRI scans using existing methods. BIG40 publishes the
GWAS summary statistics of 3935 IDPs. For each IDP, we conduct a global Wald test for the 20 features extracted by our
method. Among 3935 IDPs, 417 IDPs are marginally significant at a p-value threshold 0.05 and 114 IDPs are significant
at a p-value threshold 0.01. In Table 3, we list the 10 IDPs with the smallest p-values. Among the 10 selected IDPs, some
have been shown to be related to AD in previous literature. Patients with AD show lower fractional anisotropy (FA) and
higher mean diffusivity (MD) in internal capsule and fronto-occipital fasciculus.41 Cortical thickness is lower in lateral
occipital cortex of patients with AD.42

In addition to the global Wald testing, we conduct individual tests on each of these 10 selected IDPs. We provide a
heat map of − log10(p-values) in Figure 11. We can check the relationships between the extracted individual features and
the selected IDPs in Figure 11.
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F I G U R E 11 The heat map of − log10 (p-values) between 20 features and 10 IDPs.

5 DISCUSSION

In this paper, a new deep learning method called DeepFEIVR is proposed to extract causal features from 3D images. A key
feature is its assumption of a linear relationship between the IVs and the extracted (nonlinear image) features/exposure,
thus a linear relation between the IVs and the outcome. Some distinct properties of DeepFEIVR are its applicability to
high-dimensional data (eg, 3D neuroimages considered here) for causal feature extraction and to GWAS summary data
in subsequent extracted feature-outcome association testing. Instead of predicting images directly, we use the extracted
features as a linear function of IVs to do prediction during the model training process, ensuring the extracted features
are predictive for the outcome while maintaining a causal interpretation. By association testing using the IGAP AD
GWAS summary data, we illustrate that some causal features extracted by DeepFEIVR from the ADNI dataset are signif-
icantly associated with AD. By gradCAM, we can identify the brain regions contributing most to the extracted features
for each input image; and by using brain ROIs and IDPs, we show how the extracted features may be related to some
brain regions or IDPs, thus facilitating the interpretation of the extracted features, though this remains a challenging and
largely unsolved problem as for any black-box machine learning tools like CNNs. The proposed method DeepFEIVR is
also applicable to other large and complex biological data, a part of our on-going work. In the future, we may consider
some more general and realistic situations with the presence of invalid IVs, which for example can affect the outcome
directly (and thus violating the three valid IV assumptions).

We have extended DeepFEIVR to DeepFEIVR-CA for covariate adjustment. In the presence of covariates, adjusting
them can improve the estimation efficiency, though it may not be necessary to do so because they may be treated as
hidden confounders. In our real data analysis with the ADNI data, we have considered and adjusted for three covari-
ates, the baseline age, gender and handedness, as often used in previous GWAS analyses of the ADNI data.7 We have
shown that the features extracted from DeepFEIVR-CA are also associated with AD, though less significantly than
those from DeepFEIVR, and that the two sets of the features are related. The less significant AD association of the
DeepFEIVR-CA-extracted features could be due to that some covariates are involved in the brain-AD causal pathway; for
example, it is possible to have gender/handedness⇒ brain features⇒AD; if so, adjusting such a covariate may dilute the
effects of some related brain features, and thus increasing the chance of missing these brain features in feature extraction.
Another issue is that, since GWAS summary data usually do not provide any information on covariates, it is not possible
to conduct hypothesis testing without some additional assumptions. In our real data example, we assume that the IVs
are (nearly) uncorrelated with all the covariates, thus ignoring the covariates for hypothesis testing with GWAS summary
data would not be a problem. More studies are needed.

Existing neuroimaging GWAS are mostly based on manually extracted imaging features as endophenotypes, for
example, some regions of interest (ROIs) based on a brain atlas. However, due to limited knowledge, it is still debatable
about how to define ROIs or even brain atlases; furthermore, these ROIs may or may not be most relevant to the given
GWAS trait, that is, AD here. For example, there are at least 66 existing atlases for the whole brain structural MRI (sMRI)
data;12 which one is best to use? Given the tremendous successes of CNNs, especially for automatic feature extraction in
image analysis, it is natural to apply CNNs to extract features from neuroimaging data, and use these features as the traits
(ie, endophenotypes) to be associated with SNPs.17 These extracted features can go beyond any given ROIs. Here we move
one step forward: we’d like CNN-extract image features to be more likely to be causal to the outcome (ie, AD) by tak-
ing advantage of IV regression. In addition, given relatively small sample sizes of existing individual-level neuroimaging
genetics data (such as the ADNI data), it would be more powerful and thus useful to test extracted features with large-scale
GWAS summary data (such as the IGAP AD GWAS summary data), as demonstrated in our real data analyses. In spite
of these potential advantages, there are some limitations with the proposed approach. First, it may be time-consuming
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to develop a suitable CNN architecture, including determining many tuning parameters, for a given problem or dataset.
In the current setting, it helps when we can use predictive performance for the outcome (ie, AD status) with a validation
dataset to do so. Although there is a literature on neural architecture search (NAS) aiming to automate this searching pro-
cess, it is still quite computing-intensive.43 Second, deep learning models are data hungry, often requiring large amounts
of data. The sample size of the ADNI, around 800, is still small. Other techniques, such as transfer learning,44 data aug-
mentation17 and self-supervised learning can be explored and incorporated in the future for better performance. Third,
perhaps most importantly, it is still quite challenging to interpret CNN-extracted features. These are topics warranting
future investigations.

ACKNOWLEDGEMENTS
We thank the editors and reviewers for many helpful comments and suggestions. Dataset collection (for the part of the
ADNI dataset) in this paper was funded by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (National Insti-
tutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense award number W81XWH-12-2-0012).
The ADNI is funded by the National Institute on Aging (NIA), the National Institute of Biomedical Imaging and Bio-
engineering (NIBIB), as well as receives contributions from the following: AbbVie, Alzheimer’s Association; Alzheimer’s
Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.;
Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd. and its
affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research
& Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; Merck
& Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Cor-
poration; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. ADNI
clinical sites in Canada are funded by the Canadian Institutes of Health Research. The Foundation for the National
Institutes of Health (https://www.fnih.org) is facilitating contributions from private sources. ADNI is organized by the
Alzheimer’s Therapeutic Research Institute at the University of Southern California and the grantee organization of this
study is the Northern California Institute for Research and Education. The Laboratory for Neuro Imaging at the University
of Southern California is responsible for distributing the ADNI database.

DATA AVAILABILITY STATEMENT
The ADNI dataset can be accessed by approved users on https://adni.loni.usc.edu. The IGAP summary statistics data are
available to approved applicants on https://www.niagads.org/datasets/ng00036. The BIG40 datasets can be downloaded
from https://open.win.ox.ac.uk/ukbiobank/big40/. The UK Biobank individual-level GWAS genotype data is available to
approved users at https://www.ukbiobank.ac.uk. The code implementing our proposed method is publicly available at
https://github.com/yystat01/DeepFEIVRv1.

ENDNOTE
∗https://adni.loni.usc.edu/data-samples/data-types/mri/.

ORCID
Xiaotong Shen https://orcid.org/0000-0003-1300-1451
Wei Pan https://orcid.org/0000-0002-1159-0582

REFERENCES
1. 2022 Alzheimer’s disease facts and figures. Alzheimers Dement. 2022;18(4):700-789. doi:10.1002/alz.12638
2. Apostolova LG. Alzheimer disease. Continuum: Lifelong Learn Neurol. 2016;22(2 Dementia):419.
3. Beltran JF, Wahba BM, Hose N, Shasha D, Kline RP. Alzheimer’s Disease Neuroimaging Initiative tF. Inexpensive, non-invasive biomark-

ers predict Alzheimer transition using machine learning analysis of the Alzheimer’s disease neuroimaging (ADNI) database. PLOS One.
2020;15(7):1-26. doi:10.1371/journal.pone.0235663

4. Shen L, Thompson P, Potkin S, et al. Genetic analysis of quantitative phenotypes in AD and MCI: imaging, cognition and biomarkers.
Brain Imaging Behav. 2014;8:183-207.

5. Hong M, Reynolds C, Feldman A, et al. Genome-wide and gene-based association implicates FRMD6 in Alzheimer disease. Hum Mutat.
2012;33:521-529.

6. Sherva R, Tripodis Y, Bennett D, et al. Genome-wide association study of the rate of cognitive decline in Alzheimer’s disease. Alzheimers
Dement. 2014;10:45-52.

7. Shen L, Kim S, Risacher S, et al. Whole genome association study of brain-wide imaging phenotypes for identifying quantitative trait loci
in MCI and AD: a study of the ADNI cohort. Neuroimage. 2010;53:1051-1063.

 10970258, 2023, 20, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sim

.9824, W
iley O

nline L
ibrary on [05/11/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://www.fnih.org
https://adni.loni.usc.edu
https://www.niagads.org/datasets/ng00036
https://open.win.ox.ac.uk/ukbiobank/big40/
https://www.ukbiobank.ac.uk
https://github.com/yystat01/DeepFEIVRv1
https://adni.loni.usc.edu/data-samples/data-types/mri/
https://orcid.org/0000-0003-1300-1451
https://orcid.org/0000-0003-1300-1451
https://orcid.org/0000-0002-1159-0582
https://orcid.org/0000-0002-1159-0582
http://info:doi/10.1002/alz.12638
http://info:doi/10.1371/journal.pone.0235663


3682 YAO et al.

8. Zhang Y, Xu Z, Shen X, Pan W. Alzheimer’s Disease Neuroimaging Initiative f. testing for association with multiple traits in generalized
estimation equations, with application to neuroimaging data. Neuroimage. 2014;96:309-325.

9. Zhao B, Luo T, Li T, et al. Genome-wide association analysis of 19,629 individuals identifies variants influencing regional brain volumes
and refines their genetic co-architecture with cognitive and mental health traits. Nat Genet. 2019;51:1637-1644.

10. Zhao B, Li T, Yang Y, et al. Common genetic variation influencing human white matter microstructure. Science. 2021;372:eabf3736.
11. Zhu H, Li T, Zhao B. Statistical learning methods for neuroimaging data analysis with applications. 2022.
12. Dickie DA, Shenkin SD, Anblagan D, et al. Whole brain magnetic resonance image atlases: a systematic review of existing atlases and

caveats for use in population imaging. Front Neuroinform. 2017;11:1.
13. Zhou H, Li L, Zhu H. Tensor regression with applications in neuroimaging data analysis. J Am Stat Assoc. 2013;108(502):540-552.

doi:10.1080/01621459.2013.776499
14. Miranda MF, Zhu H, Ibrahim JG. TPRM: Tensor partition regression models with applications in imaging biomarker detection. 2015.
15. Oh K, Chung YC, Kim KW, Kim WS, Oh IS. Classification and visualization of Alzheimer’s disease using volumetric convolutional neural

network and transfer learning. Sci Rep. 2019;9(1):18150. doi:10.1038/s41598-019-54548-6
16. Patel K, Xie Z, Yuan H, et al. New phenotype discovery method by unsupervised deep representation learning empowers genetic association

studies of brain imaging. medRxiv. 2022. doi:10.1101/2022.12.10.22283302
17. Chakraborty D, Zhuang Z, Xue H, Fiecas MB, Shen X, Pan W. Deep learning-based feature extraction with MRI data in neuroimaging

genetics for Alzheimer’s disease. Genes. 2023;14(3):626. doi:10.3390/genes14030626
18. Klungel O, Uddin MJ, Boer dA, et al. Instrumental variable analysis in epidemiologic studies: an overview of the estimation methods.

Pharm Anal Acta. 2015;6(353):2.
19. Mo C, Ye Z, Ke H, et al. A new Mendelian randomization method to estimate causal effects of multivariable brain imaging exposures. Pac

Symp Biocomput. 2022;27:73-84.
20. Taschler B, Smith SM, Nichols TE. Causal inference on neuroimaging data with Mendelian randomisation. Neuroimage. 2022;258:119385.

doi:10.1016/j.neuroimage.2022.119385
21. Burgess S, Butterworth A, Thompson SG. Mendelian randomization analysis with multiple genetic variants using summarized data. Genet

Epidemiol. 2013;37(7):658-665. doi:10.1002/gepi.21758
22. Burgess S, Thompson SG. Multivariable Mendelian randomization: the use of pleiotropic genetic variants to estimate causal effects. Am

J Epidemiol. 2015;181(4):251-260. doi:10.1093/aje/kwu283
23. Hall P, Horowitz JL. Nonparametric methods for inference in the presence of instrumental variables. The Annals of Statistics.

2005;33(6):2904-2929. doi:10.1214/009053605000000714
24. Newey WK, Powell JL. Instrumental variable estimation of nonparametric models. 2003;71(5):1565-1578.
25. Dai B, Li C, Xue H, Pan W, Shen X. Inference of nonlinear causal effects with GWAS summary data, https://arxiv.org/abs/2209.08889 2022.
26. He R, Liu M, Lin Z, Zhuang Z, Shen X, Pan W. DeLIVR: a deep learning approach to IV regression for testing nonlinear causal effects in

transcriptome-wide association studies. Biostatistics. 2023. doi:10.1093/biostatistics/kxac051
27. Xu L, Chen Y, Srinivasan S, Freitas dN, Doucet A, Gretton A. Learning Deep Features in Instrumental Variable Regression. 2020.
28. Hartford J, Lewis G, Leyton-Brown K, Taddy M. Deep IV: a flexible approach for counterfactual prediction. Proceedings of the 34th

International Conference on Machine Learning, in Proceedings of Machine Learning Research. 2017;70:1414-1423.
29. Bennett A, Kallus N, Schnabel T. Deep generalized method of moments for instrumental variable analysis. Adv Neural Informat Process

Syst. 2019;32.
30. Knutson KA, Deng Y, Pan W. Implicating causal brain imaging endophenotypes in Alzheimer’s disease using multivariable IWAS and

GWAS summary data. Neuroimage. 2020;223:117347. doi:10.1016/j.neuroimage.2020.117347
31. Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-CAM: visual explanations from deep networks via gradient-based

localization. Int J Comput Vision. 2019;128(2):336-359. doi:10.1007/s11263-019-01228-7
32. Smith SM. Fast robust automated brain extraction. Hum Brain Mapp. 2002;17(3):143-155. doi:10.1002/hbm.10062
33. Zhang Y, Brady M, Smith S. Segmentation of brain MR images through a hidden Markov random field model and the

expectation-maximization algorithm. IEEE Trans Med Imaging. 2001;20(1):45-57.
34. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, et al. Automated anatomical labeling of activations in SPM using a macroscopic

anatomical parcellation of the MNI MRI single-subject brain. Neuroimage. 2002;15(1):273-289. doi:10.1006/nimg.2001.0978
35. Lambert JC, Ibrahim-Verbaas CA, Harold D, et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s

disease. Nat Genet. 2013;45(12):1452-1458. doi:10.1038/ng.2802
36. Sudlow C, Gallacher J, Allen N, et al. UK biobank: an open access resource for identifying the causes of a wide range of complex diseases

of middle and old age. PLoS Med. 2015;12(3):1-10. doi:10.1371/journal.pmed.1001779
37. Setti SE, Hunsberger HC, Reed MN. Alterations in hippocampal activity and Alzheimer’s disease. Transl Issues Psychol Sci.

2017;3(4):348-356. doi:10.1037/tps0000124
38. Hänggi J, Streffer J, Jäncke L, Hock C. Volumes of lateral temporal and parietal structures distinguish between healthy aging, mild cognitive

impairment, and Alzheimer’s disease. J Alzheimers Dis. 2011;26(4):719-734. doi:10.3233/JAD-2011-101260
39. Govindpani K, Turner C, Waldvogel HJ, Faull RLM, Kwakowsky A. Impaired expression of GABA Signaling components in the

Alzheimer’s disease middle temporal gyrus. Int J Mol Sci. 2020;21(22):8704. doi:10.3390/ijms21228704
40. Scheff SW, Price DA, Schmitt FA, Scheff MA, Mufson EJ. Synaptic loss in the inferior temporal gyrus in mild cognitive impairment and

Alzheimer’s disease. J Alzheimers Dis. 2011;24(3):547-557. doi:10.3233/JAD-2011-101782

 10970258, 2023, 20, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sim

.9824, W
iley O

nline L
ibrary on [05/11/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://info:doi/10.1080/01621459.2013.776499
http://info:doi/10.1038/s41598-019-54548-6
http://info:doi/10.1101/2022.12.10.22283302
http://info:doi/10.3390/genes14030626
http://info:doi/10.1016/j.neuroimage.2022.119385
http://info:doi/10.1002/gepi.21758
http://info:doi/10.1093/aje/kwu283
http://info:doi/10.1214/009053605000000714
https://arxiv.org/abs/2209.08889
http://info:doi/10.1093/biostatistics/kxac051
http://info:doi/10.1016/j.neuroimage.2020.117347
http://info:doi/10.1007/s11263-019-01228-7
http://info:doi/10.1002/hbm.10062
http://info:doi/10.1006/nimg.2001.0978
http://info:doi/10.1038/ng.2802
http://info:doi/10.1371/journal.pmed.1001779
http://info:doi/10.1037/tps0000124
http://info:doi/10.3233/JAD-2011-101260
http://info:doi/10.3390/ijms21228704
http://info:doi/10.3233/JAD-2011-101782


YAO et al. 3683

41. Mayo CD, Garcia-Barrera MA, Mazerolle EL, Ritchie LJ, Fisk JD, Gawryluk JR. Relationship between DTI metrics and cognitive function
in Alzheimer’s disease. Front Aging Neurosci. 2018;10:436. doi:10.3389/fnagi.2018.00436

42. Yang H, Xu H, Li Q, et al. Study of brain morphology change in Alzheimer’s disease and amnestic mild cognitive impairment compared
with normal controls. Gen Psychiatr. 2019;32(2):e100005. doi:10.1136/gpsych-2018-100005

43. Liu H, Simonyan K, Yang Y. DARTS: Differentiable Architecture Search. 2019.
44. Dhinagar NJ, Thomopoulos SI, Rajagopalan P, et al. Evaluation of transfer learning methods for detecting Alzheimer’s disease with brain

MRI. bioRxiv. 2022. doi:10.1101/2022.08.23.505030

How to cite this article: Yao Y, Charkraborty D, Zhang L, Shen X, Alzheimer’s Disease Neuroimaging Initiative,
Pan W. Deep causal feature extraction and inference with neuroimaging genetic data. Statistics in Medicine.
2023;42(20):3665-3684. doi: 10.1002/sim.9824

APPENDIX

Details of CNNs implemented on simulation and ADNI data
Figure A1 shows the model architecture of DeepFEIVR applied to the simulated dataset, which involves 2 convolutional
neural network (CNN) layers, a global averaging pooling (GAP) layer as well as 2 fully connected layers. Finally, we
project the q features (the output of a leaky ReLU layer) into the space of IVs to extract q causal features and a final
fully connected layer combines q extracted features for prediction. In Figure A1, CONV, MP, BN, GAP and FC repre-
sent a convolutional layer, a max pooling layer, a batch normalization layer, a global averaging pooling layer as well
as a fully connected layer. CONV(N@a×a) represents a convolutional layer with N filters and convolution size (a, a)
and MP(a×a) represents a max pooling layer with pooling size (a, a). FC(N) represents a fully connected layer with
N neurons.

The left panel of Figure A2 shows a CNN module to estimate f using a direct CNN model as well as DeepFEIVR, which
involves four 3D convolutional neural network layers and three fully connected layers. After each CNN layer, a 3D max
pooling (MP) layer and a batch normalization (BN) layer are added. We also add a global averaging pooling (GAP) layer
after the last CNN layer and two dropout layers between three FC layers. In the right panel of Figure A2, we compare a
direct CNN model and DeepFEIVR. In the direct CNN model, a linear regression model is directly applied to the output
of the CNN module while DeepFEIVR involves a projection layer.

The architecture of DeepFEIVR-CA for ADNI data is in Figure A3. We project the features extracted by the CNN into
the column space of the IVs and covariates. Finally, we use a fully connected layer applied to a concatenated vector of the
projected features and covariates for prediction.

F I G U R E A1 The model architecture of DeepFEIVR applied to the simulation dataset.
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F I G U R E A2 Models used for the ADNI dataset. Left: the model architecture f
𝜃
. Top-Right: the direct CNN model in which a linear

regression model follows f
𝜃
. Bottom-Right: DeepFEIVR in which the extracted features from f

𝜃
are projected onto the column space of the

IVs, then a linear regression model is applied.

F I G U R E A3 The model architecture of DeepFEIVR-CA used in the ADNI dataset. Left: the model architecture f
𝜃
. Right:

DeepFEIVR-CA.
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